8 resultados para Muscles

em Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco


Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN]Most of the information indicating ageing improves tenderness has been collected on the loin and rib-eye muscles over relatively short ageing times, assuming that all muscles will react similarly. In the present study, the effect of extended ageing times on instrumental texture (56 d) and sensory characteristics (42 d) of six different beef sub-primals [striploin (SL), inside round (IR), outside round (OR), eye of round (ER), blade eye (BE) and chuck tender (CT)] was studied. The effects of two ageing temperatures (1and 58C) were also compared. In general, ageing increased tenderness (P<0.05) of SL, BE, ER and CT sub-primals, although BE shear force increased after 42 d of ageing. On the other hand, ageing had no effect on IR tenderness (P<0.05) and resulted in a decrease in tenderness of OR (P<0.05) until day 35, with a later increase after 42 d of ageing. Increasing ageing temperature (58C) had limited effect on tenderness, but ageing time and temperature increases led to lower flavour and higher off-flavour intensity (P<0.05) of the studied sub-primals. These results suggest that cutspecific maximum ageing times and rigid adherence to temperature maximums would be of benefit to optimize postslaughter processes and meat quality

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamic interaction of limb segments during movements that involve multiple joints creates torques in one joint due to motion about another. Evidence shows that such interaction torques are taken into account during the planning or control of movement in humans. Two alternative hypotheses could explain the compensation of these dynamic torques. One involves the use of internal models to centrally compute predicted interaction torques and their explicit compensation through anticipatory adjustment of descending motor commands. The alternative, based on the equilibrium-point hypothesis, claims that descending signals can be simple and related to the desired movement kinematics only, while spinal feedback mechanisms are responsible for the appropriate creation and coordination of dynamic muscle forces. Partial supporting evidence exists in each case. However, until now no model has explicitly shown, in the case of the second hypothesis, whether peripheral feedback is really sufficient on its own for coordinating the motion of several joints while at the same time accommodating intersegmental interaction torques. Here we propose a minimal computational model to examine this question. Using a biomechanics simulation of a two-joint arm controlled by spinal neural circuitry, we show for the first time that it is indeed possible for the neuromusculoskeletal system to transform simple descending control signals into muscle activation patterns that accommodate interaction forces depending on their direction and magnitude. This is achieved without the aid of any central predictive signal. Even though the model makes various simplifications and abstractions compared to the complexities involved in the control of human arm movements, the finding lends plausibility to the hypothesis that some multijoint movements can in principle be controlled even in the absence of internal models of intersegmental dynamics or learned compensatory motor signals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we employed a dynamic recurrent neural network (DRNN) in a novel fashion to reveal characteristics of control modules underlying the generation of muscle activations when drawing figures with the outstretched arm. We asked healthy human subjects to perform four different figure-eight movements in each of two workspaces (frontal plane and sagittal plane). We then trained a DRNN to predict the movement of the wrist from information in the EMG signals from seven different muscles. We trained different instances of the same network on a single movement direction, on all four movement directions in a single movement plane, or on all eight possible movement patterns and looked at the ability of the DRNN to generalize and predict movements for trials that were not included in the training set. Within a single movement plane, a DRNN trained on one movement direction was not able to predict movements of the hand for trials in the other three directions, but a DRNN trained simultaneously on all four movement directions could generalize across movement directions within the same plane. Similarly, the DRNN was able to reproduce the kinematics of the hand for both movement planes, but only if it was trained on examples performed in each one. As we will discuss, these results indicate that there are important dynamical constraints on the mapping of EMG to hand movement that depend on both the time sequence of the movement and on the anatomical constraints of the musculoskeletal system. In a second step, we injected EMG signals constructed from different synergies derived by the PCA in order to identify the mechanical significance of each of these components. From these results, one can surmise that discrete-rhythmic movements may be constructed from three different fundamental modules, one regulating the co-activation of all muscles over the time span of the movement and two others elliciting patterns of reciprocal activation operating in orthogonal directions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90 degrees. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMB) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each sholder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figute eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activatoin. From these results, we surmise that both "discrete-rhythmic movements" such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the vertical and the other aligned with the horizontal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Limited information is available about predictors of short-term outcomes in patients with exacerbation of chronic obstructive pulmonary disease (eCOPD) attending an emergency department (ED). Such information could help stratify these patients and guide medical decision-making. The aim of this study was to develop a clinical prediction rule for short-term mortality during hospital admission or within a week after the index ED visit. Methods: This was a prospective cohort study of patients with eCOPD attending the EDs of 16 participating hospitals. Recruitment started in June 2008 and ended in September 2010. Information on possible predictor variables was recorded during the time the patient was evaluated in the ED, at the time a decision was made to admit the patient to the hospital or discharge home, and during follow-up. Main short-term outcomes were death during hospital admission or within 1 week of discharge to home from the ED, as well as at death within 1 month of the index ED visit. Multivariate logistic regression models were developed in a derivation sample and validated in a validation sample. The score was compared with other published prediction rules for patients with stable COPD. Results: In total, 2,487 patients were included in the study. Predictors of death during hospital admission, or within 1 week of discharge to home from the ED were patient age, baseline dyspnea, previous need for long-term home oxygen therapy or non-invasive mechanical ventilation, altered mental status, and use of inspiratory accessory muscles or paradoxical breathing upon ED arrival (area under the curve (AUC) = 0.85). Addition of arterial blood gas parameters (oxygen and carbon dioxide partial pressures (PO2 and PCO2)) and pH) did not improve the model. The same variables were predictors of death at 1 month (AUC = 0.85). Compared with other commonly used tools for predicting the severity of COPD in stable patients, our rule was significantly better. Conclusions: Five clinical predictors easily available in the ED, and also in the primary care setting, can be used to create a simple and easily obtained score that allows clinicians to stratify patients with eCOPD upon ED arrival and guide the medical decision-making process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate the normalized response speed (Vrn) of the knee musculature (flexor and extensor) in high competitive level volleyball players using tensiomyography (TMG) and to analyze the muscular response of the vastus medialis (VM), rectus femoris (RF), vastus lateralis (VL), and biceps femoris (BF) in accordance with the specific position they play in their teams. One hundred and sixty-six players (83 women and 83 men) were evaluated. They belonged to eight teams in the Spanish women's superleague and eight in the Spanish men's superleague. The use of Vrn allows avoiding possible sample imbalances due to anatomical and functional differences and demands. We found differences between Vrn in each of the muscles responsible for extension (VM, RF, and VL) and flexion (BF) regardless of the sex. Normalized response speed differences seem to be larger in setters, liberos and outside players compared to middle blockers and larger in males when compared to females. These results of Vrn might respond to the differences in the physical and technical demands of each specific position, showing an improved balance response of the knee extensor and flexor musculature in male professional volleyball players.